Wicking nanopillar arrays with dual roughness for selective transport and fluorescence measurements.
نویسندگان
چکیده
Silicon nanopillars are important building elements for innovative nanoscale systems with unique optical, wetting, and chemical separation functionalities. However, technologies for creating expansive pillars arrays on the submicron scale are often complex and with practical time, cost, and method limitations. Herein we demonstrate the rapid fabrication of nanopillar arrays using the thermal dewetting of Pt films with thicknesses in the range from 5 to 19 nm followed by anisotropic reactive ion etching (RIE) of the substrate materials. A second level of roughness on the sub-30 nm scale is added by overcoating the silicon nanopillars with a conformal layer of porous silicon oxide (PSO) using room temperature plasma enhanced chemical vapor deposition (PECVD). This technique produced environmentally conscious, economically feasible, expansive nanopillar arrays with a production pathway scalable to industrial demands. The arrays were systematically analyzed for size, density, and variability of the pillar dimensions. We show that these stochastic arrays exhibit rapid wicking of various fluids and, when functionalized with a physiosorbed layer of silicone oil, act as a superhydrophobic surface. We also demonstrate high brightness fluorescence and selective transport of model dye compounds on surfaces of the implemented nanopillar arrays with two-tier roughness. The demonstrated combination of functionalities creates a platform with attributes inherently important for advanced separations and chemical analysis.
منابع مشابه
Enhanced photoluminescence from CdS with SiO2 nanopillar arrays
In this paper, the enhanced photoluminescence from CdS thin film with SiO2 nanopillar array (NPA) was demonstrated. The CdS was prepared using chemical bath deposition in a solution bath containing CdSO4, SC(NH2)2, and NH4OH. The SiO2 NPA was fabricated by the nanosphere lithography (NSL) techniques. The nanopillar is about 50 nm in diameter, and the height is 150 nm. As a result, the sample wi...
متن کاملOrdered arrays of dual-diameter nanopillars for maximized optical absorption.
Optical properties of highly ordered Ge nanopillar arrays are tuned through shape and geometry control to achieve the optimal absorption efficiency. Increasing the Ge materials filling ratio is shown to increase the reflectance while simultaneously decreasing the transmittance, with the absorbance showing a strong diameter dependency. To enhance the broad band optical absorption efficiency, a n...
متن کاملRole of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes
The use of nanopillar array electrodes (NAEs) for biosensor applications was explored using a combined experimental and simulation approach to characterize the role of reaction kinetics and mass transport in glucose detection with NAEs. Thin gold electrodes with arrays of vertically standing gold nanopillars were fabricated and their amperometric current responses were measured under bare and f...
متن کاملA Dual colorimetric and Fluorometric Anion Sensor Based on Polymerizable 1, 8-Naphthalimide Dye
A new polymerizable fluorescent sensor based on the photoinduced electron transfer PET for the selective determination of fluoride ions in DMF solutions has been synthesized. The sensing system was prepared by incorporating 4-Amino-1,8-naphthalimide derivatives containing thiourea side chain at the amino moiety AFTN as a neutral F- selective flourophore and was characterized by use of the DSC, ...
متن کاملGuided mode caused by silicon nanopillar array for light emission enhancement in color-converting LED.
Plasmonic metallic nanostructures have been demonstrated an effective way to enhance the light emission efficiency in LEDs. Here, we propose a design of white LEDs that combining dielectric silicon nanopillar array in the color-converting layer. By investigating theoretically the guided mode caused by the nanopillar array-waveguide system, we demonstrate that the silicon nanopillar arrays enabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS applied materials & interfaces
دوره 6 20 شماره
صفحات -
تاریخ انتشار 2014